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Abstract—The paper investigates a multi-stage investment problem under Conditional Value
at Risk (CVaR) constraints with: a given security level for bankruptcy, short selling permission,
a normal and an elliptical total return distribution models. The purpose of the work is to find
a method of determining the optimal investment in this problem at each stage. As a result of
the study, an optimal investment strategy is found and it is shown that the optimal investment
portfolio at each stage does not depend on the value of the investor’s capital, but depends only
on the number of stage. It is shown that the multi-stage problem can be reduced to a finite
number of one-stage optimization problems, which are problems of conic programming. For
the one-stage problem, conditions for the non-emptiness of the set of admissible portfolios are
given and the Kuhn–Tucker theorem is applied. Additionally, this paper presents a numerical
example of finding the optimal investment based on the open data on rates of assert prices of
companies on the stock exchange.
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1. INTRODUCTION

The formalization of the concept of “optimal investment portfolio” and methods for its finding
were first proposed by Markowitz in 1952 in [1], where a mathematical model for the determination
of an optimal investment portfolio was described. Markowitz used the variance of returns as a risk
measure that allows one to obtain an estimate of the financial risk for a portfolio of assets. After
using variance as a risk measure, many scientists have explored alternative risk measures [2, 3]. One
such risk measure is the Value at Risk (VaR), which has been widely used since the 1980s. VaR is
an estimate of the amount that expected losses will not exceed with a given probability, expressed
in monetary terms. In the [4] quantiles, i.e., VaR constraints, were used in the formulation and
solutions of optimization problems. In [5], variance as a risk measure, which Markowitz used in
his work, is compared with the risk measure VaR. The authors conclude that, in general, the risk
measure VaR has advantages, but is not free from disadvantages; for example, using VaR it is
impossible to estimate the size of losses outside the confidence level. Some researchers [6] have
pointed out that VaR is not a coherent measure of risk (see the definition, for example, in [6]),
since it does not satisfy the subadditivity property except in the case of a normal risk distribution.
On the other hand, [5, 7] noted that the risk measure VaR is widely used by regulators in the
financial industry.
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1200 GOLUBIN et al.

The risk measure CVaR introduced in the literature in recent decades is a coherent risk measure;
in [6], the authors compared the risk measure VaR and CVaR and came to the conclusion that in
the absence of a risk-free asset in the investment portfolio, the risk measure CVaR is more effective
than the risk measure VaR. In addition, the authors note that CVaR takes into account outliers,
which is critical for valuing risky and volatile assets. In [8], the authors conclude that despite the
advantage of the risk measure CVaR over the risk measure VaR in the general case, it makes sense
to take into account both of these measures to estimate the risk of an investment portfolio.

In [9], a multi-stage investment problem with VaR constraints but without the possibility of
bankruptcy was investigated. On the other hand, (see, for example, [10]) bankruptcy, i.e., a decrease
in the investor’s capital below a given value, when further investment transactions are prohibited
for the remaining time interval, plays a significant role in the estimation of financial strategy. An
optimal investment strategy with stage-by-stage quantile (i.e., VaR) constraints was found in [11],
where the possibility of bankruptcy is assumed.

In the presented work, a multi-stage investment problem with the possibility of bankruptcy
is studied, where, unlike [11], stage-by-stage CVaR constraints are imposed; the advantages of
this approach over the introduction of VaR constraints are described above. It is shown that the
considered multi-stage risk sharing problem has a solution in which each optimal portfolio at stage t
depends only on the stage number t and does not depend on the value of the investor’s current
capital (x > 0). It is proved that the original multi-stage problem is reduced to solving a finite
number of one-stage cone optimization problems, where the objective functions are determined
by a recurrent formula, which makes it relatively easy to find the optimal investment strategy.
Unlike [12, 13], where the risk of bankruptcy at each stage was only estimated by the use of
Chebyshev’s inequality, here the authors investigate the problem by solving dynamic programming
equations that take into account the possibility of bankruptcy.

Section 2 considers a one-stage problem with CVaR constraint. Necessary and sufficient condi-
tions for the set of admissible portfolios to be non-empty and for the Slater regularity condition to
be satisfied are given, and the Kuhn–Tucker theorem is used to determine the solution to this cone
optimization problem. Section 3 is devoted to the study of optimization of investment strategy in a
multi-stage problem with CVaR constraints. It is shown that each component of the optimal port-
folio depends only on the investment stage number and does not depend on the investor’s current
capital; the necessary conditions for the optimality of the strategy are found. A model different
from the previously considered normal model is investigated in Section 4, where a generalization
of the normal model to elliptical distributions is studied. In Section 5, a numerical example is
solved, illustrating, based on real data, the finding of an optimal strategy for investing in three
large companies. Section 6 contains concluding remarks.

2. ONE-STAGE OPTIMAL PORTFOLIO CONSTRUCTION PROBLEM

Let us first study a one-stage model for choosing an optimal investment portfolio (see, for
example, [6, 11]), where the random vector of asset returns R = (R0, . . . , Rn), and Ri represents
the change in the value of the ith asset from the current value as a percentage. In terms of stock
prices, this means that Ri = p1/p0, where p0 is the current price of the ith asset (a deterministic
variable), p1 is the price of the ith asset at the next quotation (a random variable). Let R0 = m0

almost surely (a.s.), i.e., it is a risk-free asset. Let a ∈ Rn+1 is an investment portfolio where
ai is the percentage of the initial capital x0 > 0 invested in the ith asset. The budget constraint∑n

i=0 ai = 1 means the investor’s self-financing (there is no inflow of funds from outside, and the
investor’s available funds are invested only in the assets of this market) and, at the same time,
permission for “short sales,” i.e., the possibility of borrowing some assets at their current value
with the purpose of investing this money in other assets. The function to be maximized is the
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A METHOD OF OPTIMAL INVESTMENT 1201

mathematical expectation of the final investor’s capital

EXa = Ex0

n∑
i=0

aiRi = x0

n∑
i=0

aimi,

where mi = ERi and x0 > 0 is the initial capital.

To formulate the CVaR risk measure (see [6]) in the problem under investigation, we first need
to define the risk measure Value at Risk (VaR) for random income Z:

VaRα(Z) = −zα = − inf {t : P (Z < t) � α} ,
where α ∈ (0, 1/2) is a given significance level. Conditional Value at Risk (CVaR) is a risk measure
that has the meaning of expected losses in the case of exceeding the conditional risk measure VaR
with a given significance level α:

CVaRα (Z) = E {Z|Z � VaRα (Z)}.
Let fZ(z) denote the density function of the standardized income distribution (Z − EZ)/

√
DZ.

Then [6]
CVaRα (Z) = −EZ +

√
DZk,

where

k =

−
−zα∫
−∞

zfZ(z)dz

α
.

Assuming a normal approximation of the investor’s final capital Xa = x0
∑n

i=0 aiRi, which is
widely used in portfolio theory (see, for example, [6, 9]), we obtain an expression for the parameter k
(see its definition above). Since φ′(x) = −xφ(x), where φ(x) is the density of the standard normal
distribution, it is easy to see that k = φ

(
Φ−1 (α)

)
/α. Then

CVaRα (Xa) = −EXa +
√
DXa

ϕ(Φ−1(α))

α
,

where Φ (x) is the standard normal distribution function, α is the specified significance level.

Let us introduce the constraint CVaR for the problem under consideration:

CVaRα (Xa) ≡ −(x0〈a,Δm〉+ x0m0) + x0
√
aCa′

φ
(
Φ−1 (α)

)
α

� dx0.

Here Δm denotes the vector (m1 −m0, . . . ,mn −m0), 〈a,Δm〉 is the scalar product
∑n

i=1 aiΔmi,
d is the share in percent of the initial capital x0 > 0, C is the covariance matrix of n× n risky
assets.

Summarizing all the above considerations, we formulate a one-stage optimization problem:⎧⎨⎩
EXa ≡ 〈a,Δm〉+m0 → max,

a ∈ D =

{
a ∈ Rn :

√
aCa′ � 〈a,Δm〉+m0 + d

ϕ(Φ−1(α))/α

}
.

(1)

Below we will use the following natural assumptions: 0 < m0 < mini=1,...,nmi, the covariance matrix
of risky assets C is positive definite.

Further in this section, we simply present modifications of the statements obtained earlier
(see [11, 14]) for the VaR constraints and for the case of CVaR constraints (see (1)), which will be
used in solving a multi-stage problem.
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By definition, a second-order cone (see, e.g., [15]) is K = {(a, t) ∈ Rn+1 :
√
aCa′ � t}. It is

known that such a cone is regular, in other words, it is convex, closed, IntK �= ∅ and, if x ∈ K,
−x ∈ K, then x = 0. Problem (1) can be rewritten as a cone programming problem [15]

max〈a,Δm〉 under constraints
⎛⎝a,

〈a,Δm〉+m0 + d
ϕ(Φ−1(α))

α

⎞⎠ ∈ K. (2)

To solve (2), we need a description of the cone dual to K. By definition, the dual cone is K∗ =
{x ∈ Rn+1 : 〈x, y〉 � 0 for all y ∈ K}. In problem (2), it is defined [3] as

Lemma 1. The dual cone is equal to

K∗ =
{
(u, v) ∈ Rn+1 :

√
uC−1u′ � v

}
.

Below we present a condition sufficient for the fulfillment of the Slater condition (see the
definition, for example, in [15]) in problem (2). Let j denote the index at which the function

σi
ϕ(Φ−1(α))

α −Δmi reaches its minimum, i = 1, . . . n, where σi =
√
DRi is the standard deviation.

Statement 1. If

σj
ϕ(Φ−1(α))

α
−Δmj < 0, (3)

then the interior IntD �= ∅, i.e., the Slater condition in problem (1) is met and, therefore, in
problem (2) also.

Proof. Let aj be an investment portfolio of the form (0, . . . , 0, aj , 0, . . . 0), where aj is in the
jth place, and all other components of the investment portfolio are zeros. Note that in the case
under consideration short sales are allowed, i.e., aj can be less than zero. CVaR the constraint in
the one-stage problem (1) takes the form

|aj| σjϕ(Φ
−1(α))

α
− ajΔmj � d+m0.

Let us consider the minimum of the left-hand side of this expression:

ρ = min
a

{
|aj |σjϕ

(
Φ−1 (α)

)
α

− ajΔmj

}
.

Show that
ρ = −∞.

Indeed, consider the case aj � 0. The left-hand side of the CVaR constraint is rewritten as
follows:

ajσj
ϕ
(
Φ−1 (α)

)
α

− ajΔmj = aj

(
σj

ϕ
(
Φ−1 (α)

)
α

−Δmj

)
.

Since by assumption σj
ϕ(Φ−1(α))

α −Δmj < 0, we have

min
aj

{
aj

(
σj

ϕ
(
Φ−1 (α)

)
α

−Δmj

)}
= −∞.

Summarizing the above reasoning, we obtain: if σj
ϕ(Φ−1(α))

α −Δmj < 0, then IntD �= ∅. Statement 1
is proved.
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Note that from the proof of Statement 1 it obviously follows (see (3)) a sufficient condition for

the non-emptiness of an admissible set D, σj
ϕ(Φ−1(α))

α −Δmj � 0.

Statement 2. If condition (3) is satisfied, then the admissible portfolio a∗ is optimal in prob-
lem (2) if and only if there exists a vector (λ1, . . . , λn, μ) ∈ K∗ such that

Δm

⎛⎝1 +
μ

ϕ(Φ−1(α))
α

⎞⎠+ λ = 0

and

a∗λ′ +
μ(〈a∗,Δm〉+m0 + d)

ϕ(Φ−1(α))
α

= 0, where λ = (λ1, . . . , λn).

This statement is an obvious consequence of the Kuhn–Tucker theorem [15] for the concave cone
programming problem (2). Note that without the concavity condition of the objective function
in (2), which is now linear, the statement gives only necessary optimality conditions.

3. MULTI-STAGE OPTIMAL PORTFOLIO CONSTRUCTION PROBLEM

In a multi-stage problem, the investment horizon is divided into T parts or time moments
0, 1, . . . , T . The random vector of asset returns for time moment t is denoted as Rt =

(
Rt

0, . . . , R
t
n

)
,

where Rt
0 = mt

0 a.s. is the return of the risk-free asset. The vectors Rt are assumed to be indepen-
dent, as in the works on investment optimization in multi-stage models with bankruptcy [7, 12]. We
denote the mathematical expectation of the return on the ith asset by mt

i = ERt
i. The covariance

matrices of risky asset returns Ct are positive definite at each stage t.

The term “investor bankruptcy” means the following. If the investor’s current capital Xt falls
below the threshold r = 0, then the investor cannot make any transactions with assets (buy, sell,
borrow) and the value of the capital Xt is fixed from the moment t until the last time moment T .
After applying the normal approximation to the percentage increase in capital over the interval
[t, t+ 1], we obtain a normally distributed random variable Y t

a :=
∑n

1 ai(R
t
i −mt

0) +mt
0 with pa-

rameters μt (a) = 〈a,Δmt〉+mt
0 and σt(a) =

√
aCta′. Then, the stage-by-stage CVaR constraints

(see Section 2) have the form

−Xt〈a,Δmt〉+Xtm
t
0 +Xt

√
aCtaT

ϕ
(
Φ−1

(
αt

))
αt

� dtXt for all Xt = x > 0.

Here Δmt = (mt
1 −mt

0, . . . ,m
t
n −mt

0), d
t > 0 is the share in percentage of the current capital,

limiting the risk measure CVaR; αt ∈ (0, 1) is the significance level, t = 0, . . . , T − 1. We denote
the investment strategy by A = (a0, . . . , aT−1), recall that short sales are allowed.

Then, the equation of capital dynamics for the chosen investment strategy is

Xt+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xt

[
n∑

i=1

ati

(
Rt

i −mt
0

)
+mt

0

]
, when Xt > 0,

Xt, when Xt � 0,

t = 0, . . . , T − 1;X0 = x0, when x0 > 0.

(4)

It is assumed that the investor’s goal is to maximize the average value of the final capital. Thus,
the problem under consideration is the problem of optimal control of a Markov chain in the presence
of a set of absorbing states {x : x � 0}:⎧⎨⎩

J [A] ≡ E (XT ) → max, A ∈ A under constraints (4) and

−(〈a,Δmt〉+mt
0) +

√
aCtaT

ϕ
(
Φ−1

(
αt

))
αt

� dt,
(5)

where A is the set of all investment strategies that are predictable in the sense of natural filtering.
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Define the Bellman functions (value functions) as Vt (x) = maxAEXT for the controlled process
on the interval [t, T ] with the initial state Xt = x. Then VT (x) = x;

VT−1 (x) = max
a∈DT−1

xEY T−1
a = max

a∈DT−1

xGT−1 (a) = xGT−1

(
aT−1
∗

)
, if x > 0,

VT−1 (x) = x, if x � 0;

VT−2 (x) = max
a∈DT−2

x
{
E

[
GT−1

(
aT−1
∗

)
Y T−2
a |Y T−2

a > 0
]

× P
(
Y T−2
a > 0

)
+ E

[
Y T−2
a |Y T−2

a � 0
]
P

(
Y T−2
a � 0

)}
= max

a∈DT−2

xGT−2 (a)

= xGT−2

(
aT−2
∗

)
when x > 0 and VT−2 (x) = x when x � 0;

. . .

V0 (x) = max
a∈D0

x
{
E

[
G1

(
a1∗

)
Y 0
a |Y 0

a > 0
]
P

(
Y 0
a > 0

)
+ E

[
Y 0
a |Y 0

a � 0
]
P

(
Y 0
a � 0

)}
= max

a∈D0

xG0 (a) = xG0

(
a0∗

)
, where x > 0.

Here Dt, the set of admissible portfolios at stage t, is (see (5))

Dt =

⎧⎨⎩a ∈ Rn :
√
aCta′ �

〈a,Δmt〉+mt
0 + dt

ϕ(Φ−1(αt))
αt

⎫⎬⎭ , (6)

where, recall, Δmt = (mt
1 −mt

0, . . . ,m
t
n −mt

0), t = 0, . . . , T − 1, random variables Y t
a are defined

above. Note that Dt does not depend on the current state x > 0 of the process Xt.

The functions Gt(a) introduced above are defined by the recurrence formula

Gt (a) = E
[
Y t
a |Y t

a > 0
]
P

(
Y t
a > 0

)
Gt+1

(
at+1
∗

)
+ E

[
Y t
a |Y t

a � 0
]
P

(
Y t
a � 0

)
, t = 0, . . . , T − 1, (7)

GT (a) ≡ 1,

where at+1∗ is the portfolio that maximizes Gt+1(a) on the set Dt+1.

From the given expressions for the Bellman functions it follows that each portfolio at∗ in the
optimal strategy A∗ = (a0∗, . . . , aT−1∗ ) depends only on the moment t of decision making and does
not depend on the value of the current state x > 0 of the process Xt.

The following theorem gives an explicit expression for the functions Gt(a) and provides the
necessary optimality conditions in the optimal control problem (5).

Theorem 1. Let the condition (3) be satisfied for all αt, σt
j, Δmt

j.

If the investment strategy (a0∗, . . . , aT−1∗ ) is optimal, then there exists a vector

(λ1, . . . , λn, μ) ∈ K∗ =
{
(λ, μ) ∈ Rn+1 :

√
λC−1

t λ′ � μ

}
,

such that:

∇Gt

(
at∗

)
+

Δmtμ
ϕ(Φ−1(αt))

αt

+ λ = 0 (8)
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and

at∗λ
′ +

μ
(〈at∗,Δmt〉+mt

0 + dt
)

ϕ(Φ−1(αt))
αt

= 0, (9)

where ∇Gt (a) denote gradient Gt (a),

Gt (a) =

{
Φ

[
−μt (a)

σt (a)

]
μt (a) + σt (a)ϕ

[
−μt (a)

σt (a)

]}

×Gt+1

(
at+1
∗

)
+Φ

[
−μt (a)

σt (a)

]
μt (a)− σt (a)ϕ

[
−μt (a)

σt (a)

]
,

GT (a) ≡ 1.

(10)

Here Φ(·) = 1−Φ (·), Φ(·) and ϕ(·) denote the distribution function and density of the standard
normal random variable, respectively, μt (a) = 〈a,Δmt〉+mt

0 and σt(a) =
√
aCta′.

Proof. The expression for Gt (a) (see the recurrence formula (7)) is easily transformed into (10)
taking into account the expressions for the mathematical expectation of the normal random vari-
able Y t

a , truncated to the intervals (0,∞) and (−∞, 0] (see, for example, [16]). Since the denomi-
nators in (10) contain the standard deviation σt (a) =

√
aCta′, it is necessary to first show that the

degenerate investment portfolio ad = (0, . . . , 0) cannot be optimal in the problem

max
a∈Dt

Gt (a) . (11)

Indeed, consider the portfolio aγ = γΔmt, which is admissible for sufficiently small γ > 0 (see (6)).
Next,

μt (aγ) = γ‖Δmt‖2 +mt
0, σt (aγ) = γ

√
ΔmtCtΔm′

t and Φ

(
−μt (aγ)

μt (aγ)

)
→ 0,

ϕ

(
−μt (aγ)

σt (aγ)

)
→ 0 when γ → 0 + 0.

Then

Gt (aγ) = Gt

(
at+1
∗

) (
γ‖Δmt‖2 +mt

0

)
+ o(γ) > Gt

(
ad

)
= Gt

(
at+1
∗

)
mt

0

for sufficiently small values of γ > 0. Thus, to solve the problem (11) it is sufficient to limit ourselves
to the set of admissible portfolios Dt \ ad.

Condition (3) means that IntDt �= ∅, i.e., Slater’s condition in problem (11) is satisfied. Applying
Statement 2 to this cone programming problem, where the objective function Gt (a) is not, in
general, concave, we obtain (8), (9) as necessary conditions for optimality in (11). Theorem 1 is
proved.

4. NON-NORMAL RISK ASSET RETURN MODEL

Let the returns of n risky assets have a multivariate elliptical distribution (normal distribution,
Laplace distribution, Bessel distribution, etc. [17]), which allows, in particular, to take into account
the “heavy tails” in the return distributions. A convenient property of this class of distributions
for risk analysis is that a linear combination of elliptically distributed assets again has an elliptical
distribution. Let F (x) denote the distribution function of a “standard” elliptical random variable
with zero mean and unit variance, and let f(x) denote its density.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 12 2024
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Then (see Section 2) the risk measure CVaR has the form

CVaRα (Xa) = −EXa +
√
DXak

∗,

where now

k∗ =
−

−z∗α∫
−∞

xf(x)dx

α
and z∗α : F (−z∗α) = α.

Thus, the results obtained above remain valid in this case with k = φ
(
Φ−1 (α)

)
/α replaced by k∗.

Truncated normal distributions are replaced by corresponding truncated elliptical distributions.

5. EXAMPLE1

Let us illustrate the results obtained in Section 3 by solving a numerical example of finding
optimal portfolios for a market of three companies: Apple, Microsoft, Facebook. Data on the stock
price for the period 05/07/2022–05/07/2023 (one year) were taken in open access from the Nasdaq
exchange website (https://www.nasdaq.com/market-activity/stocks/). The obtained realizations
of the returns of these assets approximately follow normal distributions (but in this work, a strict
test of hypotheses about the normality of the distributions of returns by methods of mathematical
statistics remains out of consideration), therefore the assumption about the normal distribution of
the investor’s total capital at each stage seems justified. Based on these empirical data, estimates of
the vector of mathematical expectations m = (mt

0, . . . ,m
t
3) and the covariance matrix C = Ct of the

three risky assets are constructed. It is assumed that the vectors of mathematical expectations and
covariance matrices do not depend on the stage number over the entire time interval [0, T ] = [0, 4],
and the risk-free asset has a yield of m0 = 1, i.e., investments in this asset are preserved and do
not bring losses/profits. The initial capital of the investor x0 = 1; the significance level α = 0.05;
the constant d, which limits the risk measure CVaR defined above, is a variable parameter.

According to the results of Section 3 (see Theorem 1), the optimal portfolio at stage t is defined
as the solution to the problem

max
Dt

Gt (a) , t = 3, 2, 1, 0,

where the recurrence expressions for Gt (a) are defined in (10). The table below shows how the
optimal portfolio changes as the constant d, which constrains CVaR, increases.

Optimal investment portfolios in a multi-stage problem with a change
in the constant d, which limits the risk measure CVaR at each stage

t t = 0 t = 1 t = 2 t = 3
d 0.2 0.25 0.28 0.29

Apple, at∗(1) 0.7536 0.8820 0.9548 0.9786

Microsoft, at∗(2) −0.0950 −0.0457 −0.0175 −0.0082

Facebook, at∗(3) −0.1253 −0.0607 −0.0233 −0.0110

Risk-free asset, at∗(0) 0.4667 0.2244 0.0860 0.0406

With the increase of the constant d at each stage, the investor becomes more inclined to risk, so
the share of investment in a risk-free asset is expected to decrease from stage to stage, and the share
of investment in risky assets increases. For illustration, the obtained optimal investment portfolios
are shown in figure.

1 The data for this example and the solution itself were obtained with the help of Silventoinen D.P.
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A METHOD OF OPTIMAL INVESTMENT 1207

Optimal investment portfolios at stages {0, 1, 2, 3}. The solid line denotes the
share of investments in Apple shares, the share of investments in the risk-free
asset — dash-dotted line, the share of investments in Microsoft — dotted line,
the share of investments in Facebook — dashed line.

The optimal value of the objective functional J [A∗] = EX4 is equal to 1.031, which means
obtaining 3% of the average profit for the entire investment period. This low value is explained
by the fact that the observed annual returns on risky asset stocks are close to one and have low
volatility — the differences in the empirical returns of each risky asset are only fractions of a
percent. Note that the solved example is only an illustration of Theorem 1, and the methodology
for calculating the optimal investment strategy given in it would give different results in the case
of risky assets other than the three considered above.

6. CONCLUSION

The paper formulates and solves a multi-stage investment problem with probabilistic (CVaR)
constraints and the possibility of bankruptcy. It is assumed that short selling is allowed and that
the distribution of total returns at each stage is normal (or elliptical). It is shown that the optimal
investment portfolio at each stage does not depend on the value of the investor’s capital, but depends
only on the number of the investment stage. In the context of finding optimal investment portfolios,
it is shown that a multi-stage problem is reduced to a finite number of one-stage optimization
problems that are recursively connected and are conical programming problems. For the auxiliary
one-stage problem, sufficient conditions for the non-emptiness of the set of admissible portfolios
and the fulfillment of the Slater regularity conditions are presented and proven. In solving the one
stage problem, a modified Kuhn–Tucker theorem is applied for the case of generalized inequalities.
The result of solving a multi-stage problem can be considered a method for constructing optimal
investment portfolios, applicable in practice with known estimates of the vectors of mathematical
expectations and matrices of covariances of returns. A numerical example based on one year of stock
exchange price data for three companies is also presented to illustrate the theoretical results. The
following directions of development of this work seem interesting: using other distributions instead
of the normal or elliptical model for returns, for example, gamma distributions; using another risk
measure instead of CVaR, for example, shortfall probability [3]. Another direction could be the
analysis of a similar problem, but without of short sales.
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